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Fig. 5. Apparatus for electric field measurement behind a dielectric lens.
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Fig. 6. Comparison of calculated and measured normalized electric

field squared in a 20-cm X 20-cm X—Y plane, 6 cm behind a polyfoam
sphere. (a) Along the direction of incident electric field vector (Eyp).
(b) Along the direction of incident magnetic-field vector (Hp).

comparison to that of incident magnetic field direction as is predicted
by the caleulation. The slightly lower measured peak compared to the
calculated value is expected from the averaging effect of the measur-
ing antenna which has a 5-cm diameter.

DISCUSSION

The results of the investigation indicate that the focusing effect of
dielectric spheres depends on dielectric material, sphere size, and
source frequency. The Stycast 35 DA dielectric material which has a
relative dielectric constant of 5.0 does not perform as well as poly-
ethylene (¢ = 2.26) and polyfoam (¢ = 1.89) in focusing electric
fields. Hence the approach of increasing the dielectric constant in
hope of increasing focusing of radiation may not be valid. The
electric field may be focused internally in the sphere with ¢ = 5.0.
The increase of focusing factor with increased sphere diameter is
found. However, the increase is not monotonic. The source frequency
affects both beamwidth of focused radiation and its peak. The result
indicates that the source frequency is the primary-controlling factor
of the width of the base of the focused beam. However, for a highly
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focused beam, the value of the electric field squared at the base of the
beam will be very small compared to that of the peak. For the
practical applications of selective exposure, one may define a beam
spot to be the region across which the focused electric field squared
attenuates from its peak value to a given fraction of the peak value,
such as one-tenth. The beam spot is therefore dependent on the
focusing factor as well as the source frequency. Hence, the peak and
the beam spot of the focused beam can be partially controlled by the
magnitude of incident power density and the sphere diameter without
changing source frequency.

CONCLUSION

This investigation indicates that by proper selection of source fre-
quency, dielectric materials, and the size of the dielectric spheres,
specified focused microwave radiation can be produced for localized
exposure of biological subjects. This technique may also be useful for
medical applications such as noncontact selective heating of dis-
eased tissues as an alternative to surgical removal, the therapeutic
selective heating of wounded tissues, and selective heating in con-
junction with chemotherapy.

It should be emphasized that the electric fields caleulated and
measured in this investigation are exposure fields in the absence of
the subject to be irradiated. It is expected that the presence of the
irradiated object near this exposure field will significantly alter the
exposure field. Also, the tissue penetration characteristics of such a
focused microwave exposure field is as yet not determined. The
significant dependence of microwave absorption patterns in tissues
due to different sources (exposure fields) has been reported [57].
Additional work is needed to determine the tissue absorption charac-
teristics of the focused exposure field. In the current investigation, the-
apparatus for producing a focused exposure field requires a plane-
wave source and hence an anechoic chamber as well as a high-power
generator. To increase the practical utility of the dielectric sphere,
research may be needed to determine the possibility of replacing the
incident plane-wave source with a more practical source.
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On the Synthesis of Waveguides and Cavities Realized
with Nonseparable Solutions of Helmholtz Wave Equation

P. J. LUYPAERT anp D. H. SCHOONAERT

Abstract—This short paper shows how nonseparable solutions of
the Helmholtz wave equation can be used in the synthesis of wave-
guides and cavities with nonconventional cross section, and also
investigates the attenuation and Q factor.

Manuscript received March 17, 1975; revised July 21, 1975.
The authors are with the Department of Electronics, Catholic Univer-
sity of Louvain, Heverleer, Louvain, Belgium.



1062

INTRODUCTION

Simple nonseparable solutions of the Helmholtz wave equation
are occasionaly mentioned in the literature [1]. Moseley discovered
a whole class of nonseparable solutions through the use of a genera-
tive differential operator as shown in [27. Further we have analyzed
[37] the use of cavities, synthesized with nonseparable solutions of
the Helmholtz wave equation. It is the aim of this study to use
nonseparable solutions in the synthesis of waveguides and cavities
and to investigate some interesting properties.

ANALYSIS
Let

Vig(z,y) + Ko (zy) =0 1

be the Helmholtz wave equation for a two-dimensional case. The
separable solution will be given by:

¢® (z,y) = sin (e + B) sin (yy + 8) (2)
with
a? + % = k2 3)

If we form a two-dimensional operator
H=y— —a— 4)

and operate upon the function ¢® (zy), we obtain a nonseparable
solution which is also a solution of (1). After iterative use of H we
find a series of nonseparable solutions ¢® (zy),e® (zy) « 0™ (zy)
of the Helmholtz wave equation with the condition given in (3).
The first member has the following expression:

W (xy) = vz cos (ax + B) sin (vy - 8)

—ay sin (azx + B) cos (vy +3). (5),

It is easily seen that these wave functions can be written as:
™ (z,y) = fi(z,y) sin (az + B) sin (vy + 8)
+ fa(@,y) sin (az + B) cos (vy + o)
+ fa(m,y) cos (az + ) sin (vy +8)
+ fu(z,y) cos (ax + B) cos (yvy + 8). {6)

Substitution in the Helmholtz wave equation gives us the following
four coupled-differential equations for the functions fi (z,y), fo(z,¥),
 Jfa(@yy), and fu(z,y):

V@) +2 (y By <x,y>) e
2 . oz

Vi, (z,y) + 2 (‘y afi (2,y) w sz(x,y)> = o
9y oz
Vita) +2(—y L 1 D) g

(7

V2f4(:c,y) + 2 (7 afa;xyy) + a afz(%?l)) =0.

ax

We assume an air-filled hollow uniform waveguide with perfect
conducting walls, according to the customary Dirichlet boundary
condition, where ¢™ (zy) = 0 on the walls, this equation has to be
solved. However, except for n = 0, where ¢® (zy) is the separable
solution, none of the resulting patterns define closed areas. Linear
combinations of ¢© (z,y) and ¢™ (z,y) in the form of

d(@y) = ¢O(2,y) + X Cap™ (z,y) (8)
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produce, closed boundaries only when n is even.

By choosing appropriate values of the constant C,, any shape
between a square and a circle can be approximated as shown in
Fig. 1. Moreover, we end up -with an exact analytical expression.
However, it turns out that there is a maximum value for the con-
stant factors C,, which when exceeded show no closed contours.

Let us now concentrate on the TM mode and a second-order
combination of the wave function

¢(@) = O (@y) + Ch® (z9). (9)

Starting from a TMu mode in a rectangular waveguide with
dimensions ¢ and b, the solution for the axial electric field K, be-
comes

E, = sinzsin ’—; y + Cof(,y,m,b) (10)

with f (z,y,m,b) the nonseparable solution of the second-order given by

K

by

Ix2+ 2| gin 2 sin = +I sin x cos
b Y 57 Y

+a:cos:csin%y +2x%ycosxcosq—;;y (11)

C-003
C4=00004

X

Fig. 1.

Cross-sectional shapes resulting from ¢%(xy) + Cwp(zy) +
Cupt(zy) = 0.

Fig. 2. Waveguide cross sections for various values of Ca.
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Depending on C, various forms of cross sections can be found, as
shown in Fig. 2.

A salient feature of the figure can be seen. For C; < 0.01, the
second term in (10) is a small perturbation of the original separable
solution, and results in a rectangular cross section with rounded
corners.

For (s > 0.01 the cross section totally departs from the original
rectangular shape. We actually have a maximum C. value in order
to obtain closed boundaries.

Fig. 3 shows Cnax against the dimensions a/b for ecombinations
of ¢® (x,y) with a second- and fourth-order nonseparable solution.
The second-order combination has a wide range of C: values resulting
in a cross section with closed boundaries. Investigation of the cutoff
frequency as a function of C; and with a/b as a parameter, presented
in Fig. 4, shows a small increase in frequency. We note that these
results are in agreement with those obtained in the study of rec-
tangular cross sections with rounded corners [4]. So far we can
conclude that nonseparable solutions can be used for describing
TM modes in waveguides with general cross sections varying from
square or rectangular shape with rounded corners to a form that has
nothing in common with the original one.

Let us consider the field energy and power. The power in the
axial direction of the waveguide is given by:

©2 max

0,04

002

(2)

1 15 2

-

a/b

Fig. 3. Max C: against dimensions of rectangular waveguide. Curve
(1) ¢z, ¥) =¢° @y) + C2 ¢* (zy). Curve (2) ¢, ¥) =¢° (2y) +
Cy Pt (2y).
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Fig. 4. Variation of cutoff frequency f¢ as function of perturbation

factor Ce.
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P, = (12),

N |

B x
—Ic—czYeLE,,Ez dA

where A is the cross section of the waveguide and Y, and 8 are the
wave admittance and the propagation factor, respectively. Substi-
tution of (10) in (12) leads to

g

™
P,=-7—Y, / sin? z sin® — y + 2C, f (z,y,7,b)
2 ket 4 [ b

+ Cz2f2(x,y,7r,b)] d4. (13)

In order to compare waveguides of perturbed cross section with
those of rectangular cross section, we define the relativ e power:

gLl

Prel - Pz’

(14)
where P, and P, are the powers of the perturbed and rectangular
cross sections, respectively. After reduction to the same cross-
sectional surface, Fig. 5 shows the relative power flow P.q versus
the perturbation factor C» with a/b as a parameter. At this stage
we can conclude that, with respect to energy transport, a waveguide
synthesized with nonseparable solutions can support more power
depending on the value of C: and secondly that rectengular wave-
guides do not need accurately finished corners: Indeed, some rounded
corners give a hetter energy transport. Investigation of the maxi-
mum amplitude of the electric field | E; |max normalized to the
maximum amplitude of the field in the rectangular cross section for
constant relative power, as shown in Fig. 6, indicates that for con-
stant power, values of C: > 0.014 result in an increcsing value of
| B, |mae. However, high values of C, result in significant distortion
of the original rectangular cross section and obviously are more diffi-

001 002 003 0,04 c2

Fig. 5. Relative power flow Pre1 versus the perturbstion factor Cz
with a/b as a parameter and for normalized areas of cross sections and
normalized amplitudes.

‘Ez’max

007 002 603 004 [

Fig. 6. |F;] max versus C; with a/b as a parameter.
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cult to construct. A very good compromise can be found for Cs
between 0.014 < C: < 0.04. This results in 1.04 < | E, |max < 1.36.
Other important properties are the attenuation factor and the @
factor. Taking into account finite conductivity of the waveguide
walls for a TM mode, the attenuation constant has the following

expression:
~ (C/24)[ (eo/uo) 1B

a = c

[1 — (wCZ/wZ) ]1/2

(15)

where

C  circumference of the cross section;

A area of the cross section;

R, surface resistance;

%, dimensionless number depending on the shape of the cross
section and given by the following relation:

1 | 9.
g

an
The relative attenuation factor compares the attenuation in the
perturbed waveguide by the use of nonseparable solutions, with
that of the nonperturbed or rectangular waveguide and is given as
follows:

(16)

2 C
dl = &, — E, |[2dA.
560#0AL| [

_ fepay,

"¢ 240!

In Fig. 7 we show (C/24), and £, versus the perturbation factor Co.

It is obvious that only the factor £, has a considerable variation

and is therefore a measure of the attenuation factor presented in
Fig. 8. For cylindrical cavities, the @ factor is given by:

_ud 1

= [(C/24) Jtor. 7

Q=% (18)
pe 82[1 + £(Cd/44) ]
where
5 4 e
1
08
08| ciza
—
0of 0,02 0,03 M 0,04 C2
Fig. 7. Relative values of (C/2A), and &, as a function of C;,
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Fig. 8. Relative attenuation factor versus the perturbation factor C..
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Gret

001 002 Q03 004 C2

Fig. 9. Relative Q factor versus the perturbation factor C,.

u, permeability of the metal walls of the cavity;
§ skin depth;
d length of the cavity.

In the same manner a relative @ factor can be defined in the form

1 + £Cd/44
Q, = LT ECd/

14 £/C'd/44" (19

Fig. 9 shows @, as an increasing function of the perturbation fac-
tor Ce.

In conclusion we can say that nonseparable solutions of the Helm-
holtz wave equation are suitable for describing TE and TM modes
in waveguides and cavities with general cross sections; moreover,
they are exact wave functions for any deformed conventional rec-
tangular or circular waveguide so that no approximate method of
solutions has to be taken. Further, it has been shown that wave-
guides and cavities synthesized with nonseparable solutions have
better attenuation and higher @ factor than comparable conven-
tional waveguides shapes.

Further, it is clear that they have interesting properties for micro-
wave measurement and power applications. All ealculations were
done on the computer of the Rekencentrum of the Catholic Univer-
sity of Louvain.
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Tapered Asymmetric Microstrip Magic Tee
M. H. ARAIN anp N. W. SPENCER, MEMBER, IEEE

Abstract—The design, development, and constructuion of a very
compact decade-(1-10-GHz) bandwidth microstrip —8.34-dB cou-
pler are described. Calculations are given for the voltage coupling
coefficient and the low-frequency cutoff, and the method of deter-
ming the physical dimensions of the circuit is described. Also, the
feasibility of a decade-bandwidth microstrip magic tee by cascading
two —8.34-dB couplers is demonstrated by comparing the actual and
theoretical results of a coupler.
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