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Fig. 5. Apparatus for electric field measurement behind a dielectric lens.
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Fig. 6. Comparison of calculated and measured normalized electric

fkid squared in a 20-cm X 20-cm X– Y plane, 6 cm behind a polyfoam

sphere. (a) Along the direction of incident electric field yector (Eo ).

(b) Along the direction of incident magnetic-field vector (Ho).

comparison to that of incident magnetic field direction as is predicted

by the calculation. The slightly lower measured peak compared to the

calculated value is expected from the averaging effect of the measur-

ing antenna which has a 5-cm diameter.

DISCUSSION

The results of the investigation indicate that the focusing effect of

dielectric spheres depends on dielectric material, sphere size, and

source frequency. The Stycast 35 DA dielectric material which has a

relative dielectric constant of 5.0 does not perform as well as poly-

ethylene (d = 2.26) and polyfoam (/ = 1.89) in focusing electric

fields. Hence the approach of increasing the dielectric constant in

hope of increasing focusing of radiation may not be valid. The

electric field may be focused internrdly in the sphere with e’ = 5.0.

The increase of focusing factor with increased sphere diameter is

found. However, the increase is not monotonic. The source frequency

affects both beamwidth of focused radiation and its peak. The result

indkates that the source frequency is the primary controlling factor

of the width of the base of the focused beam. However, for a highly

focused beam, the value of the electric field squared at the base of the

beam will be very small compared to that of the peak. For the

practical applications of selective exposure, one may define a beam

spot to be the region across which the focused electric field squared

attenuates from its peak value to a given fraction of the peak value,

such as one-tenth. The beam spot is therefore dependent on the

focusing factor as well as the source frequency. Hence, the peak and

the beam spot of the focused beam can be partially controlled by the
magnitude of incident power density and the sphere diameter without

changing source frequency.

CONCLUSION

This investigation indicates that by proper selection of source fre-

quency, dielectric materials, and the size of the dielectric spheres,

specified focused microwave radiation can reproduced for localized

exposure of biological subjects. This technique mayalsobeusefulfor

medical applications such as noncontact selective heating of dis-

eased tissues as an alternative to surgical removal, the therapeutic

selective heating of wounded tizsues, and selective heating in con-

junction with chemotherapy.

It should be emphasized that the electric fields calculated and

measured in thk investigation are exposure field~s in the absence of

the subject to be irradiated. It is expected th[at the presence of the

irradiated object near thk exposure field will significantly alter the

exposure field. Also, the tissue penetration characteristics of such a

focused microwave exposure field is as yet not determined. The

significant dependence of microwave absorption patterns in tissues

due to different sources (exposure fields) has been reported [5].

Additional work is needed to determine the tissue absorption charac-

teristics of the focused exposure field. In the current investigation, the

apparatus for producing a focused exposure field requires a plane-

wave source and hence an anechoic chamber as well as a high-power

generator. To increase the practical utility of the dielectric sphere,

research may be needed to determine the possibility of replacing the

incident plane-wave source with a more practical source.
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On the Synthesis of Waveguides and Cavities Realized

with Nonseparable Solutions of Helmholtz Wave Equation

P. J. LUYPAERT AND D. H. SCHOIONAERT

Absfracf—This short paper shows how nonseparable solutions of
the Hefmholtz wave equation can be used in the synthesis of wave-

guides and cavities with nonconventional cross section, and also
investigates the attenuation and Q factor.
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INTRODUCTION

Simple nonseparable solutions of the Helmholtz wave equation

areoccasionaly mentioned in the literature [1]. Moseleydkcovered

a whole class of nonseparable solutions through the uaeof a genera-

tive differential operator h shown in [2]. Further we have analyzed

[3]the use of cavities, synthesized with nonseparable solutions of

the Helmholtz wave equation. It is the aim of this study, to use

nonseparable solutions in the synthesis of waveguides and cavities

and to investigate some interesting propertied.

ANALYSIS

Let

(1)v%(w) +7%%(%?/) = o

be the Helmholtz wave equation for a two-dimensional case. The

separable solution will be given by:

& + ~z = ~z< (3)

If we form a two-dimensional operator

and operate upon the function @@)(XV), we obtain a nonseparable

solution which is also a solution of (1). After iterative use of H we

find a series of nonseparable solutions @ (zv),@) (zy).. .&J (zy)

of the Helmholtz wave equation with the condkion given in (3).

The first member has the following expression:

4(’) (ZV) = TX cos (WC +8) sin (YV + ~)

–ay sin (ax + j3) cos (YV + f3). (5)

It is easily seen that these wave functions can be written as:’

+ f2 (w) sin (CYZ+6) cos (W +8)

Substitution in the Helmholtz wave equation gives us the following

four coupled-differential equations for the functions j, (z,y), ~~(z,v),

~a (~,~), and ~i(~,v):

( a.fz (x,Y)

)

13.f3 (X,v) o
V’f, (z,l/) + 2 ‘y — +a— .

Oy . 6’X

(

a.fl (z,v)

)

aj3(z,v) :0
V’f, (z,v) +2 7= – a=

(

af+ (xjy)

)

af, (X,y) = o
W3(W) + .2 –7 —+.7

ay

(

a.fa (x,v)

)

af2(z,y) o
V’f, (w) + 2 ‘Y — +.7 = .

a.y
(7)

We assume an air-filled hollow uniform waveguide with perfect

conducting walls, according to the customary Dirichlet boundary

condition, where o(*) (xy) = O on the walls, this equation has to be

solved. However, except for n = O, where +(0) (ZV) is the separable

solution, none of the resulting patterns define closed areas. Linear

combinations of +(0) (xjy) and +(~) (x,y) in the form of

4 (%?/) = ‘#(’J)(%?/) + z CA(”) (%Y) (8)
.

produce, closed boundaries only when n is even.

By choosing appropriate valuee of the constant C., any shape

between a square and a circle can be approximated as shown in

Fig. 1. Moreover, we end up -with an exact analytical exprcmion.

However, it turns out that there is a maximum value for the con-

stant factors C*, which when exceeded show no closed contours.

Let us now concentrate on the TM mode and a second-order

combination of the wave function

$(Z,?J) = +(”) (X,v) + c,f#@ (z,l/) . (9)

Starting from a TM,, mode in a rectangular waveguide with

dimensions a and b, the solution for the axial electric field E. be-

comes

E. = sin z sin ~ y + Czt (x,y,~,b) (lo)

with~(z,y,~,b) the nonseparable solution of the second-order given by

[(~x)+y21sinxsin:y+:ysinxc0s:y
+xcosxsin~ y+2x~ycoszcos~y (11)

and a = r.

e

Fig. 1. Cross-sectional shapes resulting from @o(ZW) + C@* (ZV) +
c4@4 (w) = o.
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Fig. 2. Wavegnide cross sections for various values of CZ.
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Dependhrg orr C.1, various forms of cross sections can be found, as

shown in Fig. 2.

A salient feature of the figure can be seen. For C.Z <0.01, the

second term in (10) is a small perturbation of the original separable

solution, and results in a rectangular cross section with rounded

corners.

For C2 >0.01 the cross section totally departs from the original

rectangular shape. We actually have a maximum CZ value in order

to obtain closed boundaries.

Fig. 3 shows Cm,. against the dimensions a/b for combinations

of @Oj(z,v) with a second- and fourth-order nonseparable solution.

The second-order combination has a wide range of C, values resulting

in a cross section with closed boundaries. Investigation of the cutoff

frequency as a function of C, and with a/b as a parameter, presented

in Fig. 4, shows a small increase in frequency. We note that these

results are in agreement with those obtained in the study of rec-

tangular cross sections with rounded corners [4]. So far we can

conclude that nonseparable solutions can be used for describing

TM modes in waveguides with general cross sections varying from

square or rectangular shape with rounded corners to a form that has

nothing in common with the original one.

Let us consider the field energy and power. The power in the

axial direction of the waveguide is given by:

I‘2 max

0,04 -

0,02 -

1 1,5 2

Fig. 3. Max Cz against dimensions of rectangular waveguide. Curve
(I) +(2, U) = @o (2w) + C2 @ (zY). curve (2) +(~. v) = +0 (W) +
C4454 (w).
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Fig. 4. Variation of cutoff frequency fc as function of perturbation
factor C*.

(i2).

where A is the cross section of the waveguide and Y. md @ are the

wave admittance and the propagation factor, respect wely. Substi-

tutionof (10) in (12) leads to

Pe=; :2Ye
/[

sinzxsinz~y +2 CZf(*,Y,~,~)
A

1+C,yz(x,v,m,b) dA. (13)

In order to compare waveguides of perturbed cross section with

those of rectangular cross section, wedefine therelati~e power:

(14)

where P. and Pit are the powers of the perturbed and rectangular

cross sections, respectively. After reduction to the same cross-

sectional surface, Fig. 5 shows the relative power flow P,.l versus

the perturbation factor CZwith a/b as a parameter. At t~ls stage
wecan conclude that, with respect to energy transport, a waveguide

synthesized with nonseparable solutions can support more power

depending on the value of Cz and secondly that rectangular wave-

guides donotneed accurately finished corners: Indeed, somerounded

corners give a better energy transport. Investiga/lon of the maxi-

mum amplitude of the electric field lEi]~~, normalized to the

maximum amplitude of the field in the rectangular cross section for

constant relative power, as shown in Fig. 6, indicates that for con-

stant power, values of CZ >0.014 result in an increasing value of

\ E. Ima,. However, high values of C, result in significmt dk+tortion

of theoriginal rectangular cross section and obviously memoredMi-

Prel

1,1I

Qol 0,02 0,03 -%6i--- C2

Fig. 5. Relative power flow P.. I versus the perturbation factor C2
with a)b as a parameter and for normalized areas of cross sections and
normalized amplitudes.
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cidt to construct. A very good compromise can be found for C~

between O.014 <C, <0.04 .Thisresultsinl.04 < lE.1~~, <1.36.

Other important properties are the attenuation factor and the Q

factor. Taking into account finite conductivity of the waveguide

walls for a TM mode, the attenuation constant has the following

expression:

(C/2A ) [ (fO/lJO) ]Ij2Rm ~c

a = [1 – (coo’/& l’)]’/’

(15)

where

circumference of the cross section;

area of the cross section;

surface resistance;

dimensionless number depending on the shape of the cross

section and given bythe following relation:

The relative attenuation factor compares the attenuation in the

perturbed waveguide by the use of nonseparable solutions, with

that of the nonperturbed or rectangular waveguide and is given as

follows:

(C/2A)&

a’ = (C’/2A’)~:
= [(c/2A) l&. (17)

In Fig. 7weshow (C/2A ),and&, versus theperturbation factor Cz.

It is obvious that only the factor .$=,has a considerable variation

and is therefore a measure of the attenuation factor presented in

Fig. 8. For cylindrical cavities, the Qfactoris given by:

where

I
0,0, 0,02 0,03 ,,0, C2

Nig. 7. Relative values of (C/2A)r and &, as a function of CL

I

(18)

I 0,01 0D2 0,03 0,04 rz

Fig. S. Relative attenuation factor versus the perturbation factor Cz.
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Fig. 9. Reiative Q factor versus thepertm’bation factor C*.

u. permeability of the metal walls of the cavity;

6 skin depth;

d length of the cavity.

In the same manner a relative Q factor can be defined in the form

Q, =
1 +~OCd/4A

1 +&’C’d/4A’”
(19)

Fig. 9 shows Q, as an increasing function of the perturbation fac-

tor C2.

In conclusion we can say that nonseparable solutions of the Helm-

holtz wave equation are suitable for describing TE and TM modes

in waveguides and cavities with general cross sections; moreover,

they are exact wave functions for any deformed conventional rec-

tangular or circular waveguide so that no approximate method of

solutions has to be taken. Further, it has been shown that wave-

guides and cavities synthesized with nonseparable solutions have

better attenuation and Klgher Q factor than comparable conven-

tional waveguides shapes.

Further, it is clear that they have interesting properties for micro-

wave measurement and power applications. All calculations were

done on the computer of the Rekencentrum of the Catholic Univer-

sit y of Louvain.

REFERENCES

[1] P. M. Morse and H. Fesbach, Methods of Theoretical Phusics. New

York: McGraw-Hill, 1953, pp. 753–757.
[2] D. S. Moseley, ‘‘ Nonseparable solutions of the Helmholtz wave

equation, ” Quart. ‘APP1. Math., vol. 22, Pp. 356357, 1965.
[3] P. J. Luypaert and D. H. Schoonaert, in 1974 Proc. Microwave Power

Stimp., pp. 135-1/l-135-l/3 and B5-4/l–B5-4/3.
[4] P. Lagasse and J. van Bladel, “Square and rectangular waveguidas

with rounded corners, ” IEEE Trans. Microwaue Theorfj Tech., vol.

MTT-20, pp. 331–337, May 1972.

Tapered Asymmetric Microstrip Magic Tee

M. H. ARAIN AND N. W. SPENCER, MEMBER, IEEE

Absfract—The design, development, and construction of a very

compact decade-( 1-1 O-GHZ) bendwidth microstrip — 8.34-dB cou-

pler are described. Calculations are given for the voltage coupling

coefficient and the low-frequency cutoff, and the method of deter-

~g the physical dimensions of the circuit is described. Also, the
feasibility of a decade-bandwidth microstrip magic tee by cascading

two – 8.34-dB couplers is demonstrated by comparing the actual and

theoretical results of a coupler.
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